AGYAT GUPTA (M.Sc.B.Ed.M.Phill)
 $09425109601($ P) 0751-2630601

SECTION - A

Question numbers 1 to 10 carry 1 mark each. For each question four choices are provided of which only one is correct. You have to select the correct choice.

1. For what value of k will $\frac{7}{3}$ be a root of $3 x^{2}-13 x-\mathrm{k}=0$.
(A) 14
(B) $\frac{3}{7}$
(C) $\frac{-7}{2}$
(D) -14
2. Which of the following is not an A.P.
(A) $13,8,3,-2,-7,-12$
(B) $10.8,11.2,11.6,12,12.4$
(C) $8 \frac{1}{7}, 18 \frac{2}{7}, 28 \frac{3}{7}, 48 \frac{4}{7}, 58 \frac{5}{7}$
(D) $8 \frac{3}{23}, 11 \frac{6}{23}, 14 \frac{9}{23}, 17 \frac{12}{23}$
3. If a pole of height 6 m casts a shadow $2 \sqrt{3} \mathrm{~m}$ long on the ground, then the sun's elevation is.
(A) 30°
(B) 60°
(C) 45°
(D) 90°
4. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents PQ and PR to the circle are drawn. What are the lengths (in cm) of tangents PQ and PR ?
(A) 13,12
(B) 13,13
(C) 12,12
(D) 12,18
5. To draw a pair of tangents to a circle which are inclined to each other at an angle of 75°. It is required to draw tangents at the end points of those two radii of the circle, the angle between them should be.
(A) 105°
(B) 65°
(C) 95°
(D) 75°
6. The angle of elevation of the top of a tower from a point on the ground is 45°. If the observer is 42 m away from the foot of the tower, the height of the tower is.
(A) 63 m
(B) 21 m
(C) 84 m
(D) 42 m
7. In the figure, if the semiperimeter of $\triangle \mathrm{ABC}=23 \mathrm{~cm}$ then $\mathrm{AF}+\mathrm{BD}+\mathrm{CE}$ is :

(A) 46 cm
(B) 11.5 cm
(C) 23 cm
(D) 34.5 cm
8. In the figure, PT is a tangent to the circle with centre O . If $\mathrm{PT}=30 \mathrm{~cm}$ and diameter of circle is 32 cm , then length of line segment OP will be.

(A) 68 cm
(B) 34 cm
(C) 17 cm
(D) 34.8 cm
9. The circumference of a circle is 100 cm . The side of a square inscribed in the circle is :
(A) $50 \sqrt{2} \mathrm{~cm}$
(B) $\frac{100}{\pi} \mathrm{~cm}$
(C) $\frac{50 \sqrt{2}}{\pi} \mathrm{~cm}$
(D) $\frac{100 \sqrt{2}}{\pi} \mathrm{~cm}$
10. The volume of the largest right circular cone that can be cut out from a cube of edge 4.2 cm is :
(A) $9.7 \mathrm{~cm}^{3}$
(B) $77.6 \mathrm{~cm}^{3}$
(C) $58.2 \mathrm{~cm}^{3}$
(D) $19.4 \mathrm{~cm}^{3}$

SECTION - B

Question numbers 11 to 18 carry 2 marks each.

11. Using quadratic formula, determine the roots of following equation :

$$
x-\frac{1}{x}=3
$$

12. Find the sum of the first 23 terms of the A.P : $7,10 \frac{1}{2}, 14$, \qquad
13. A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.
14. The minute hand of a clock is $\sqrt{21} \mathrm{~cm}$ long. Find the area swept by the minute hand on the face of the clock from 7.00 am to 7.05 am .
15. Prove that the tangents drawn at the ends - points of a diameter of a circle are parallel.

In the figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$.

16. Find the value of x, if the distance between the points $(x,-1)$ and $(3,-2)$ is $x+5$.
17. If the point $\mathrm{C}(-1,2)$ divides internally the line segment joining $\mathrm{A}(2,5)$ and $\mathrm{B}(x, y)$ in the ratio $3: 4$, then find the coordinates of B.
18. The radii of the circular bases of a right circular cylinder and a cone are in the ratio of $3: 4$ and their heights are in the ratio of $2: 3$. What is the ratio of their volumes?

SECTION - C

Question numbers 19 to 28 carry 3 marks each.

19. Solve the following quadratic equation :

$$
x^{2}-3 x-10=0
$$

OR

Solve the following equation using method of factorisation $\frac{4}{x}-3=\frac{5}{2 x+3}, x \neq 0, \frac{-3}{2}$.
20. Determine ' a ' so that $2 a+1, a^{2}+a+1$ and $3 a^{2}-3 a+3$ are consecutive terms of an A.P.
21. Draw a pair of tangents to a circle of radius 3.5 cm which are perpendicular to each other.
22. Show that the points $(7,3),(3,0),(0,-4)$ and $(4,-1)$ are the vertices of a rhombus.
23. Find the area of $\triangle \mathrm{ABC}$ whose vertices are $\mathrm{A}(4,4), B(0,0)$ and $C(6,2)$.
24. A child has a die whose six faces show the letters as given below :
(A B C D E A
The die is thrown at random once. What is the probability of getting (i) A (ii) E.
25. Three coins are tossed together. Find the probability of getting at least two heads.
26. A solid metallic sphere of diameter 21 cm is melted and recast into a number of smaller cones, each of diameter 7 cm and height 3 cm . Find the number of cones so formed.
27. A piece of wire that has been bent in the form of a semicircle including the bounding diameter is straightened and then bent in the form of a square. The diameter of the semicircle is 14 cm . Which has a larger area, the semi-circle or the square. Also find the difference between them.

OR
In the figure, $A B C$ is a triangle right angled at A. Semicircles are drawn on $A B, A C$ and $B C$ as diameters. Find the area of the shaded region.

28. Prove that the parallelogram circumscribing a circle is rhombus.

OR

In the figure $\mathrm{PO} \perp \mathrm{QO}$. The tangents to the circle with centre O at P and Q intersect at a point T. Prove that PQ and OT are right bisectors of each other.

SECTION - D

Question numbers 29 to 34 carry 4 marks each.
29. Two pillars of equal heights are on either side of a road, which is 100 m wide. The angles of elevation of the top of the pillars are 60° and 30° at a point on the road between the pillars. Find the position of the point between the pillars on the road and the height of the pillars.

OR
From the top of a building 60 m high the angles of depression of the top and the bottom of a tower are observed to be 30° and 60° respectively. Find the height of the tower.
30. For what value of n, the $n^{\text {th }}$ terms of the A.P. $63,65,67$, \qquad and $3,10,17$, \qquad are equal? Also find that term.

OR
A ladder has rungs 25 cm apart. The rungs decrease uniformly in length from 45 cm at the bottom to 25 cm at the top (see figure). If the top and bottom rungs are 2.5 m apart, what is the length of the wood required for the rungs ?

31. A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by $250 \mathrm{~km} / \mathrm{h}$ from its usual speed. Find its usual speed.
32. A building is in the form of a right circular cylinder surmounted by a hemispherical dome both having the same base radii. The base diameter of the dome is equal to $\frac{2}{3}$ of the total height of the building. Find the height of the building, if it contains $67 \frac{1}{21} \mathrm{~m}^{3}$ of air.

OR

A well whose diameter is 7 m has been dug 22.5 m deep and the earth dugout is used to form an embankment around it. If the height of the embankment is 1.5 m . Find the width of the embankment.
33. A shuttle cock used for playing Badminton has the shape of a frustum of a cone mounted on a hemisphere (see figure). The diameters of the ends of the frustrum are 5 cm and 2 cm , the height of the entire shuttle cock is 7 cm . Find the external surface area.

$$
\left(\text { Use } \pi=\frac{22}{7}\right)
$$

> AGYAT GUPTA (M.Sc.B.Ed.M.Phill) 89- LAXMI BAI COLNY DIRECTOR (TARGET MATHEMATICS)
> 09425109601(P) 0751-2630601
34. Prove that the tangents to a circle from an external point are equal.

- o O o -

